omnizart vocal-contour¶
Lists the available options of each sub-command.
transcribe¶
omnizart vocal-contour transcribe¶
Transcribe a single audio and output as a WAV file.
This will output a WAV file with the same name as the given audio, except the extension will be replaced with ‘.wav’.
omnizart vocal-contour transcribe [OPTIONS] INPUT_AUDIO
Options
- -m, --model-path <model_path>¶
Path to the pre-trained model or the supported transcription mode.
- -o, --output <output>¶
Path to output the prediction file (could be MIDI, CSV, …, etc.)
- Default
./
Arguments
- INPUT_AUDIO¶
Required argument
generate-feature¶
omnizart vocal_contour generate-feature¶
Extract the feature of the whole dataset for training.
The command will try to infer the dataset type from the given dataset path.
omnizart vocal_contour generate-feature [OPTIONS]
Options
- -d, --dataset-path <dataset_path>¶
Required Path to the downloaded dataset
- -o, --output-path <output_path>¶
Path for saving the extracted feature. Default to the folder under the dataset.
- -n, --num-threads <num_threads>¶
Number of threads used for parallel feature extraction.
- Default
4
- -h, --hop-size <hop_size>¶
Hop size in seconds with respect to sampling rate.
- Default
0.02
- -s, --sampling-rate <sampling_rate>¶
Adjust input sampling rate to this value.
- Default
16000
train-model¶
omnizart vocal_contour train-model¶
Train a new model or continue to train on a pre-trained model
omnizart vocal_contour train-model [OPTIONS]
Options
- -d, --feature-path <feature_path>¶
Required Path to the folder of extracted feature
- -m, --model-name <model_name>¶
Name for the output model (can be a path)
- -i, --input-model <input_model>¶
If given, the training will continue to fine-tune the pre-trained model.
- -e, --epochs <epochs>¶
Number of training epochs
- -s, --steps <steps>¶
Number of training steps of each epoch
- -vs, --val-steps <val_steps>¶
Number of validation steps of each epoch
- -b, --batch-size <batch_size>¶
Batch size of each training step
- -vb, --val-batch-size <val_batch_size>¶
Batch size of each validation step
- --early-stop <early_stop>¶
Stop the training if validation accuracy does not improve over the given number of epochs.