omnizart music¶
Lists the detailed available options of each sub-commands.
transcribe¶
omnizart music transcribe¶
Transcribe a single audio and output as a MIDI file.
This will output a MIDI file with the same name as the given audio, except the extension will be replaced with ‘.mid’.
Supported modes are: Piano, Stream, Pop
omnizart music transcribe [OPTIONS] INPUT_AUDIO
Options
- -m, --model-path <model_path>¶
Path to the pre-trained model or the supported transcription mode.
- -o, --output <output>¶
Path to output the prediction file (could be MIDI, CSV, …, etc.)
- Default
./
Arguments
- INPUT_AUDIO¶
Required argument
generate-feature¶
omnizart music generate-feature¶
Extract the feature of the whole dataset for training.
The command will try to infer the dataset type from the given dataset path.
omnizart music generate-feature [OPTIONS]
Options
- -d, --dataset-path <dataset_path>¶
Required Path to the downloaded dataset
- -o, --output-path <output_path>¶
Path for saving the extracted feature. Default to the folder under the dataset.
- -n, --num-threads <num_threads>¶
Number of threads used for parallel feature extraction.
- Default
4
- -h, --harmonic¶
Whether to use harmonic version of the feature
train-model¶
omnizart music train-model¶
Train a new model or continue to train on a pre-trained model
omnizart music train-model [OPTIONS]
Options
- -d, --feature-path <feature_path>¶
Required Path to the folder of extracted feature
- -m, --model-name <model_name>¶
Name for the output model (can be a path)
- -i, --input-model <input_model>¶
If given, the training will continue to fine-tune the pre-trained model.
- -e, --epochs <epochs>¶
Number of training epochs
- -s, --steps <steps>¶
Number of training steps of each epoch
- -vs, --val-steps <val_steps>¶
Number of validation steps of each epoch
- -b, --batch-size <batch_size>¶
Batch size of each training step
- -vb, --val-batch-size <val_batch_size>¶
Batch size of each validation step
- --early-stop <early_stop>¶
Stop the training if validation accuracy does not improve over the given number of epochs.
- -y, --model-type <model_type>¶
Type of the neural network model
- Default
attn
- Options
attn | aspp
- -f, --feature-type <feature_type>¶
Determine the input feature types for training
- Default
Spec, Ceps
- Options
Spec | Ceps | GCoS
- -l, --label-type <label_type>¶
Determine the output label should be note- (onset, duration) or stream-level (onset, duration, instrument)
- Default
note-stream
- Options
note | note-stream | pop-note-stream | frame | frame-stream
- -n, --loss-function <loss_function>¶
Detemine which loss function to use
- Default
smooth
- Options
focal | smooth | bce
- -t, --timesteps <timesteps>¶
Time width of each input feature
- Default
256